Diagnostic plots for pathClassifier
.
plotClassifierROC(mix)
The result from pathClassifier
.
Diagnostic plots of the result from pathClassifier.
itemTopROC curves for the posterior probabilities (mix\$posterior.probs
)
and for each HME3M component (mix\$h
). This gives information about what response
label each relates to. A ROC curve with an AUC < 0.5
relates to y = 0
.
Conversely ROC curves with AUC > 0.5
relate to y = 1
.
itemBottomThe likelihood convergence history for the HME3M model. If the parameters
alpha
or lambda
are set too large then the likelihood may decrease.
Other Path clustering & classification methods:
pathClassifier()
,
pathCluster()
,
pathsToBinary()
,
plotClusterMatrix()
,
plotPathClassifier()
,
plotPathCluster()
,
predictPathClassifier()
,
predictPathCluster()
Other Plotting methods:
colorVertexByAttr()
,
layoutVertexByAttr()
,
plotAllNetworks()
,
plotClusterMatrix()
,
plotCytoscapeGML()
,
plotNetwork()
,
plotPathClassifier()
,
plotPaths()